Trigonometri

Areasatsen

Teori

Triangelsatserna

De trigonometriska funktionerna sinus, cosinus och tangens är definierade utifrån, och används ofta i samband med, rätvinkliga trianglar. Men är de även användbara för godtyckliga trianglar?

Ja, genom att använda definitionerna för sinus och cosinus kan man härleda satser för att bestämma area, vinklar och sidor för en godtycklig triangel. Dessa brukar kallas för triangelsatserna: areasatsen, sinussatsen och cosinussatsen.

Areasatsen

Om man känner till en triangels bas och höjd kan man bestämma dess area med hjälp av areaformeln för en triangel. Ibland känner man dock inte till höjden, men om man vet två sidlängder och den mellanliggande vinkeln kan man använda areasatsen.

Area=absin(C)2\text{Area}=\dfrac{ab\sin(C)}{2}

I formeln är aa och bb sidlängder i triangeln och CC är den vinkel som ligger mellan dem.

Det går bra att använda vilket par av sidlängder som helst så länge man känner till den mellanliggande vinkeln. Om man t.ex. känner till sidorna bb och cc i triangeln måste man känna till vinkeln A.A.

Bevis

Areasatsen

Exempel

Bestäm arean med areasatsen

Exempel

Bestäm vinkeln med areasatsen