{{ article.chapterName }}

{{ article.displayTitle }}

Teori

Ekvationssystem kan användas för att lösa olika typer av verkliga problem där man har olika samband mellan okända värden. Det är inte alltid meningsfullt att rita upp sambanden som räta linjer och då kan man använda en algebraisk metod, t.ex. substitutions- eller additionsmetoden.

Ekvationssystem som modeller

Många problem kan lösas med ekvationssystem. Man kan göra det på följande sätt.

  1. Identifiera okända värden och ge dem variabelnamn.
  2. Ställ upp olika samband mellan variablerna.
  3. Bilda ett ekvationssystem av sambanden.
  4. Lös ekvationssystemet och tolka resultatet.
Det är viktigt att komma ihåg att man behöver lika många ekvationer som antalet okända variabler för att kunna lösa ekvationssystemet, och det är även viktigt att dessa beskriver olika samband.

Exempel

Ställ upp ekvationssystemet

Substitutionsmetoden

Substitutionsmetoden går ut på att man substituerar, dvs. ersätter, en variabel i någon av ekvationerna med ett uttryck som bara innehåller den andra variabeln. Exempelvis kan ekvationssystemet {y4=2x9x+6=3y\begin{cases}y-4=2x \\ 9x+6=3y \end{cases} lösas på detta sätt.

Lös ut en av variablerna ur valfri ekvation så att den står ensam på ena sidan om likhetstecknet. Då ska uttrycket på andra sidan enbart innehålla den andra variabeln. Genom att addera 44 till båda led i den första ekvationen kan man lösa ut yy: {y=2x+49x+6=3y.\begin{cases}y=2x+4 \\ 9x+6=3y. \end{cases}

Ersätt variabeln i den andra ekvationen med det uttryck man fick i första steget. Uttrycket 2x+42x+4 sätts in istället för yy i den andra ekvationen: {y=2x+49x+6=3(2x+4).\begin{cases}y=2x+4 \\ 9x+6=3({\color{#0000FF}{2x+4}}). \end{cases}

Nu innehåller den andra ekvationen endast en variabel och kan lösas.

{y=2x+4(I)9x+6=3(2x+4)(II)\begin{cases}y=2x+4 & \, \text {(I)}\\ 9x+6=3(2x+4) & \text {(II)}\end{cases}
{y=2x+49x+6=32x+34\begin{cases}y=2x+4 \\ 9x+6=3\cdot2x+3\cdot4 \end{cases}
{y=2x+49x+6=6x+12\begin{cases}y=2x+4 \\ 9x+6=6x+12 \end{cases}
{y=2x+43x+6=12\begin{cases}y=2x+4 \\ 3x+6=12 \end{cases}
{y=2x+43x=6\begin{cases}y=2x+4 \\ 3x=6 \end{cases}
{y=2x+4x=2\begin{cases}y=2x+4 \\ x=2 \end{cases}

Sätt in värdet på variabeln som löstes ut i förra steget i någon av ursprungsekvationerna och beräkna värdet av den andra variabeln.

{y=2x+4(I)x=2(II)\begin{cases}y=2x+4 & \, \text {(I)}\\ x=2 & \text {(II)}\end{cases}
{y=22+4x=2\begin{cases}y=2 \cdot {\color{#0000FF}{2}}+4 \\ x=2 \end{cases}
{y=4+4x=2\begin{cases}y=4+4 \\ x=2 \end{cases}
{y=8x=2\begin{cases}y=8 \\ x=2 \end{cases}

Lösningen till ekvationssystemet är {x=2y=8.\begin{cases}x=2 \\ y=8. \end{cases}

Additionsmetoden

Denna metod går ut på att man gör sig av med en variabel genom att addera ekvationerna ledvis. Exempelvis kan ekvationssystemet {y4=2x9x+6=3y\begin{cases}y-4=2x \\ 9x+6=3y \end{cases} lösas med additionsmetoden på följande sätt.

För att lättare kunna jämföra de två ekvationerna kan det vara bra att arrangera om termerna så att de står i samma ordning. I exemplet flyttas variabeltermerna till vänsterleden och konstanttermerna till högerleden.

{y4=2x(I)9x+6=3y(II)\begin{cases}y-4=2x & \, \text {(I)}\\ 9x+6=3y & \text {(II)}\end{cases}
{-4=2xy9x+6=3y\begin{cases}\text{-}4=2x-y \\ 9x+6=3y \end{cases}
{2xy=-49x+6=3y\begin{cases}2x-y=\text{-}4 \\ 9x+6=3y \end{cases}
{2xy=-49x=3y6\begin{cases}2x-y=\text{-}4 \\ 9x=3y-6 \end{cases}
{2xy=-49x3y=-6\begin{cases}2x-y=\text{-}4 \\ 9x-3y=\text{-}6 \end{cases}

Nu vill man att koefficienten framför någon av variablerna ska vara likadan i båda ekvationerna, fast med omvänt tecken. Det gör man genom att multiplicera båda led i någon av ekvationerna med lämpliga konstanter. I exemplet multipliceras ekvation (I) med -3\text{-} 3 så att termen 3y3y finns i ekvation (I) och -3y\text{-} 3y i ekvation (II). {-6x+3y=129x3y=-6\begin{cases}\text{-} 6x + 3y=12 \\ 9x-3y=\text{-}6 \end{cases}

Ekvationerna adderas ledvis. Det innebär att vänsterledet för en ekvation adderas till vänsterledet för den andra och högerledet för den ena adderas till högerledet för den andra. Här adderas den andra ekvationen till den första.

Två ekvationer som adderas ledvis

Detta ger ekvationssystemet {3x=69x3y=-6. \begin{cases}3x=6 \\ 9x - 3y=\text{-} 6. \end{cases}

Nu kan man lösa den nya ekvationen för att bestämma den ena variabeln: 3x=6x=2. 3x=6 \quad \Leftrightarrow \quad x=2. Då får man {x=29x3y=-6. \begin{cases}x=2 \\ 9x - 3y=\text{-} 6. \end{cases}

Sätt in värdet på den nu kända variabeln i någon av ursprungsekvationerna. Här sätts x=2x=2 in i ekvation (II).

{x=2(I)9x3y=-6(II)\begin{cases}x=2 & \, \text {(I)}\\ 9x - 3y=\text{-} 6 & \text {(II)}\end{cases}
{x=2923y=-6\begin{cases}x=2 \\ 9\cdot {\color{#0000FF}{2}} - 3y=\text{-} 6 \end{cases}
{x=2183y=-6\begin{cases}x=2 \\ 18 - 3y=\text{-} 6 \end{cases}
{x=2-3y=-24\begin{cases}x=2 \\ \text{-} 3y=\text{-}24 \end{cases}
{x=2y=8\begin{cases}x=2 \\ y=8 \end{cases}

Lösningen till ekvationssystemet är {x=2y=8.\begin{cases}x=2 \\ y=8. \end{cases}

Exempel

Lös ekvationssystemet algebraiskt

Ekvationssystem med fler än två okända

Lösningsmetoderna för ekvationssystem är inte begränsade till två ekvationer och två okända värden, utan gäller även för ekvationssystem med fler ekvationer och okända. För att ett sådant ekvationssystem ska kunna lösas måste det finnas lika många ekvationer som okända värden. Ekvationssystemet nedan har tre ekvationer och tre okända värden: xx, yy och z.z. {x+y+z=6-x+2yz=0xy+3z=8\begin{cases}x+y+z=6 \\ \text{-} x + 2y - z = 0 \\ x - y + 3z = 8 \end{cases}

I dessa fall används oftast substitutionsmetoden. På samma sätt som för två ekvationer löser man först ut en variabel ur en av ekvationerna. Uttrycket man får då sätter man in i de andra, vilka skapar ett nytt ekvationssystem med bara två okända som kan lösas på valfritt sätt. Värdena på de variablerna används sedan för att beräkna den tredje.

Exempel

Lös ekvationssystemet med tre okända variabler

Uppgifter