{{ item.displayTitle }}
{{ item.subject.displayTitle }}
Inget resultat
Läromedel computer
Kalkylator videogame_asset
Avsnitt layers
{{ item.displayTitle }}
{{ item.subject.displayTitle }}
Inget resultat
close

Addera vektorer

Eftersom vektorer både har storlek och riktning måste vi ta hänsyn till båda dessa egenskaper när vektorer adderas. Vektorerna u=(4,0)\vec{u}=(4,0) och v=(5,0)\vec{v}=(5,0) har samma riktning, så resultanten r=u+v\vec{r}=\vec{u}+\vec{v} kommer också få samma riktning, och vara lika lång som deras sammanlagda längd.

Resultanten får koordinaterna (4,0),(4,0), dvs. summan av u\vec{u} och v\vec{v}:s respektive koordinater. Vid addition av två eller flera godtyckliga vektorer adderas xx- och yy-koordinaterna var för sig. Denna regel för vektoraddition brukar skrivas på följande sätt.

(a,b)+(c,d)=(a+c,b+d)(a,b)+(c,d)=(a+c,b+d)

Om vektorerna w=(4,2)\vec w=(4,2) och z=(2,3)\vec z=(2,3) adderas, kan vi skriva resultanten som Det kan även göras grafiskt genom att rita ut resultanten av vektorerna som adderas och läsa av dess koordinater.

Addera vektorer

Återställ