Den här sidan innehåller förändringar som inte är märkta för översättning.


Regel

Ändringskvot

En ändringskvot, ΔyΔx,\frac{\Delta y}{\Delta x}, beskriver den genomsnittliga förändringen för en funktion på ett intervall. Den kan till exempel beskriva medelhastigheten för en bil under en viss tid eller medeltillväxten för bakterier under ett experiment. För att beräkna ändringskvoten bestämmer man ändpunkterna på intervallet, (x1,y1)(x_1, y_1) och (x2,y2),(x_2,y_2), och dividerar förändringen i yy-led med den i xx-led.

ΔyΔx=y2y1x2x1\dfrac{\Delta y}{\Delta x} =\dfrac{y_2-y_1}{x_2-x_1}

Man använder alltså en motsvarighet till kk-formeln och resultatet kan tolkas som medellutningen över intervallet. Ändringskvoten kan dock beräknas för vilken funktion som helst, till skillnad från kk-värdet som endast kan beräknas för räta linjer. Ett annat sätt att tolka ändringskvoten är som lutningen för den sekant som ritas mellan intervallets ändpunkter.

{{ 'ml-template-article-upsell1' | message }}

{{ 'ml-template-article-upsell2' | message }}

{{ 'ml-template-article-upsell3' | message }}